引力路径积分的广义纠缠楔
近日,美国加州大学伯克利分校Sami Kaya团队研究了引力路径积分的广义纠缠楔。2025年9月2日出版的《高能物理杂志》发表了这项成果。
最近,Bothemso和Penington (BP)提出了一种与重力块区域相关的纠缠楔。
研究组以引力路径积分为主题,在时间反射对称条件下推导了这一提议。为了做到这一点,他们利用随机张量网络(RTNs)和重力中的固定几何状态之间的联系。研究组通过去除RTN区域中的张量并计算它们在“空心”RTN中生成的开放分支的熵来定义RTN中块区域的熵。
研究组推导了RTN的BP提议,因此,也适用于重力中的固定几何状态。然后,通过将一般全息状态表示为固定几何状态的叠加并主题化对角近似,研究组提供了BP建议的通用引力路径积分推导。他们证明了计算rsamnyi熵Sn的鞍取决于体区域是如何被测量不变地指定。然而,研究组证明了BP提议在n→1极限下是普遍再现的。
附:英文原文
Title: Hollow-grams: generalized entanglement wedges from the gravitational path integral
Author: Kaya, Sami, Rath, Pratik, Ritchie, Kyle
Issue&Volume: 2025-09-02
Abstract: Recently, Bousso and Penington (BP) made a proposal for the entanglement wedge associated to a gravitating bulk region. In this paper, we derive this proposal in time-reflection symmetric settings using the gravitational path integral. To do this, we exploit the connection between random tensor networks (RTNs) and fixed-geometry states in gravity. We define the entropy of a bulk region in an RTN by removing tensors in that region and computing the entropy of the open legs thus generated in the “hollowed” RTN. We thus derive the BP proposal for RTNs and hence, also for fixed-geometry states in gravity. By then expressing a general holographic state as a superposition over fixed-geometry states and using a diagonal approximation, we provide a general gravitational path integral derivation of the BP proposal. We demonstrate that the saddles computing the Rényi entropy Sn depend on how the bulk region is gauge-invariantly specified. Nevertheless, we show that the BP proposal is universally reproduced in the n → 1 limit.
DOI: 10.1007/JHEP09(2025)032
Source: https://link.springer.com/article/10.1007/JHEP09(2025)032